
Vidaptive: Efficient and Responsive Rate Control for Real-Time Video
on Variable Networks

Pantea Karimi Sadjad Fouladi ⊞ Vibhaalakshmi Sivaraman Mohammad Alizadeh

Massachusetts Institute of Technology, ⊞ Microsoft Research

Abstract
Real-time video streaming relies on rate control mechanisms
to adapt video bitrate to network capacity while maintaining
high utilization and low delay. However, the current video
rate controllers, such as Google Congestion Control (GCC) in
WebRTC, are very slow to respond to network changes, leading
to link under-utilization and latency spikes. While recent delay-
based congestion control algorithms promise high efficiency
and rapid adaptation to variable conditions, low-latency video
applications have been unable to adopt these schemes due to
the intertwined relationship between video encoders and rate
control in current systems.

This paper introduces Vidaptive, a new rate control mecha-
nism designed for low-latency video applications. Vidaptive
decouples packet transmission decisions from encoder output,
injecting “dummy” padding traffic as needed to treat video
streams akin to backlogged flows controlled by a delay-based
congestion controller. Vidaptive then adapts the frame rate,
resolution, and target bitrate of the encoder to align the video
bitrate with the congestion controller’s sending rate. Our eval-
uations atop WebRTC show that, across a set of cellular traces,
Vidaptive achieves ∼2× higher video bitrate and 1.6 dB higher
PSNR, and it reduces 95th-percentile frame latency by 2.7s
with a slight increase in median frame latency.

1 Introduction
Real-time video streaming has become an integral part of
modern communication systems, enabling a wide range of
applications from video conferencing to cloud gaming, live
video, and teleoperation. A critical component of these sys-
tems is the rate control mechanism, which adapts the video
bitrate to the available network capacity. State-of-the-art rate
controllers, however, such as the Google Congestion Control
(GCC) [1] algorithm used in WebRTC [2] have significant
shortcomings. Specifically, GCC is slow to adapt to changes
in network conditions, leading to both link under-utilization
and latency spikes.

In recent years, numerous congestion control algorithms
(CCA) have been proposed that achieve high utilization, low
delay, and fast convergence [3–6]. These algorithms are highly
responsive to network variations, adapting within a few round-
trip times (RTTs) while maintaining high utilization and low

delay. In contrast, GCC and similar video rate control algo-
rithms lag considerably. When network bandwidth opens up,
GCC can take an order of magnitude longer than state-of-the-
art congestion controllers to increase the video bitrate. This
conservative approach can significantly hurt GCC’s utilization
and the video quality in variable networks. In our experiments
using cellular network traces, GCC under-utilizes the network
by 2-3× compared to Copa [3].

This sluggishness is not merely a limitation of GCC but a
symptom of a broader issue: the inherent coupling between
video encoders and rate control algorithms [7]. Current sys-
tems use an encoder-driven rate controller that adapts the
video bitrate by controlling the encoder’s target bitrate. In
these systems, the instantaneous data transmission rate is dic-
tated by the size of the video frames produced by the encoder.
However, most video encoders are not designed to adjust to
rapid fluctuations in network conditions. It generally takes
several frames to adapt frame sizes to new target bitrates [7].
Moreover, the frame sizes are variable and only meet the target
bitrate on average in a best-effort manner. To maintain low
latency despite the vagaries of the encoder output, GCC sets
the target bitrate conservatively and increases it slowly. Never-
theless, during times of significant congestion (e.g., due to link
outages), the encoder cannot immediately adapt to capacity
drops, and GCC experiences significant latency spikes.

Recently, Salsify [7] addressed this challenge by modify-
ing the encoder to be more adaptive to network variations.
Such approaches, however, are challenging to deploy in prac-
tice. Changing the encoder usually requires changes to both
the sender and receiver sides of the application. With the
prevalence of hardware codecs across billions of devices, such
drastic changes have become virtually infeasible.

We present Vidaptive, a new rate control mechanism for
low-latency video applications that significantly improves ef-
ficiency and responsiveness to network variability without
modifying the encoder. Vidaptive’s design is based on two
key concepts.

The first is to decouple instantaneous packet transmission
decisions from the encoder’s output. Specifically, Vidaptive
treats video streams as if they were backlogged flows for the
purpose of rate control. It uses an existing delay-based CCA
like Copa. If the encoder produces more packets than the

1

ar
X

iv
:2

30
9.

16
86

9v
1

 [
cs

.N
I]

 2
8

Se
p

20
23

CCA is willing to send, it buffers them at the sender. On the
other hand, Vidaptive sends “dummy packets” to fill the gap
if the encoder does not produce enough packets to sustain
the CCA’s rate. This approach ensures that “on the wire”,
Vidaptive behaves identically to its adopted CCA running
with a backlogged flow. The CCA’s feedback loop can operate
without disruption and track available bandwidth quickly.

Next, Vidaptive matches the video bitrate to the CCA’s
sending rate using mechanisms that adapt the frame rate, the
encoder’s target bitrate, and the video resolution. To keep
frame latency within acceptable bounds when the encoder
overshoots the CCA’s rate, Vidaptive skips a frame if the de-
lay at the sender exceeds a threshold (effectively reducing the
frame rate to handle sudden latency spikes). Further, Vidap-
tive uses a novel online optimization algorithm to determine
the encoder’s target bitrate based on the CCA’s sending rate
and recent frame delay measurements. The optimization pro-
cedure provides a principled approach to navigate the tradeoff
between video bitrate and frame rate, and importantly, it adapts
automatically to the variability in the encoder’s output and
the network rate.

We implement Vidaptive atop WebRTC and test it using
sixteen cellular network traces with significant variability on
an emulated network link [8]. Compared to GCC, our key
findings are:

1. Across all traces, Vidaptive improves link utilization by
∼2.5× and video bitrate by ∼2× on average across all
traces, resulting in 1.6dB improvement in Peak-Signal-
to-Noise-Ratio (PSNR) on average.

2. Across all frames in all traces, Vidaptive improves aver-
age PSNR by 1.9 dB and P95 PSNR by 2.2 dB.

3. Across all frames in all traces, Vidaptive increases me-
dian latency by 47 ms (148 ms → 195 ms), but it reduces
95𝑡ℎ percentile frame latency by 2687 ms (4120 ms →
1433 ms). On a per-trace basis, Vidaptive improves P95
frame latency by ∼ 2.7 seconds on average but is 45-384
ms worse on some traces.

4. Vidaptive reduces frame rate by ∼ 10% on average per
trace.

2 Motivation and Key Ideas
2.1 The Problem

Status Quo for Video Rate Control. To understand how rate
control for real-time video works today, we run Google Con-
gestion Control (GCC) [1], the rate control mechanism inside
WebRTC, on an emulated link that alternates between 2Mbps
and 500Kbps every 40 seconds. The minimum network round-
trip time (RTT) is 50ms, and the buffer size at the bottleneck is
large enough that there are no packet drops. In Fig. 1a, GCC is
sluggish to increase its rate when the stream begins and when
the link capacity rises back to 2Mbps at 𝑡 = 80s. Specifically,
GCC takes 18 seconds to go from 500Kbps to 2Mbps, result-
ing in lower visual quality during that time (Fig. 1b). GCC’s

conservative nature also results in link under-utilization (85%)
in the steady state. GCC is slow to react to capacity drops:
in Fig. 1c, when the link rate drops to 500Kbps at 𝑡 = 40s,
GCC’s frame latency spikes to over a second and settles only
after 12 seconds. This issue is because GCC continues to send
at a higher rate even after the drop, causing queue buildup,
added delay, and frame loss.

Contrast this behavior with traditional congestion control
algorithms [3, 4, 9, 10] operating on backlogged flows: they
respond to such network events much faster, typically over few
RTTs. For instance, the “Backlogged Copa” lines in Fig. 1a
and Fig. 1c show that Copa [3], running on a backlogged flow
on the same time-varying link is much more responsive to
the network conditions. This wide disparity between GCC on
real-time video traffic and Copa on backlogged traffic begs
the question: Why does the state-of-the-art video rate control
lag so far behind the state-of-the-art congestion control?
Encoder-driven Rate Control Loop. GCC has been carefully
designed to work within the tight latency bounds of interac-
tive video applications. Its rate control responds to increases
or decreases in delay gradients over RTT timescales. It is
also conservative in its link utilization to not overwhelm the
network and cause delays or packet loss.

However, the real limiting factor is that, in current video
congestion controllers like GCC, the instantaneous rate at
which data is transmitted on the wire is dictated by the size
of the video frames produced by the encoder. GCC controls
the video bitrate by adapting the encoder’s target rate, but
the encoded frame sizes can be highly variable. The encoder
achieves its target bitrate only on average—usually throughout
several frames [7]. Moreover, the encoder’s bitrate cannot
immediately adapt to changes in the target bitrate. We illustrate
this behavior in Fig. 2 where we supply the VP8 encoder with
a target bitrate that switches between 2Mbps and 500Kbps
every 5s and observe its achieved bitrate. Every time the bitrate
goes up from 500Kbps to 2Mbps, the encoder takes nearly
2 seconds to catch up. On the way down from 2Mbps to
500Kbps, it takes about a second to lower the bitrate.

The reason for this lag is that the size of an encoded frame
is dependent on several factors, including quantization param-
eters, the encoder’s internal state, and the motion, and is only
known accurately after encoding. The encoder tries to rec-
tify its over- and under-shootings by adjusting the quality of
subsequent frames. Even once the encoder matches the target
bitrate, it exhibits considerable variance around the average on
a per-frame basis. Salsify [7] deals with this unpredictability
by encoding multiple versions of the same frame and picking
the best match after the fact. However, putting aside the extra
computational cost, this approach requires radical changes to
the codec—at both the sender and the receiver—which hinders
its real-world deployability.

The unpredictable nature of the encoder leads to two main
issues: (1) Since the encoder cannot match the target bitrate
on per-frame timescales, GCC cannot immediately reduce the

2

(a) Link Utilization (b) Frame Quality (c) Frame Latency

Figure 1: Utilization, frame quality, and latencies of Copa on a backlogged flow, GCC on a video flow, and Copa + Vidaptive on a video
flow. GCC is very slow to match the available capacity and under-utilizes the link in the steady state. Copa + Vidaptive responds much
faster to link variations and is similar to Copa’s performance on a backlogged flow.

Figure 2: Video encoder’s response to a time-varying “Target”
input bitrate. “Achieved” reflects the encoder’s output rate. The
encoder is slow to increase its output rate and exhibits a lot of
variation around the average output rate in the steady state.

bitrate if the capacity suddenly drops. Instead, GCC has to
be conservative and leave abundant bitrate headroom at all
times (including in the steady state) so that it reduces the risk
of congestion during fluctuations. Despite this, GCC still ex-
periences occasional latency spikes (Fig. 1c). (2) GCC is very
slow to grab available bandwidth. Whenever GCC increases
its target bitrate, the encoder matches it over a few seconds,
meaning it also takes several seconds for GCC to get feedback
at the higher rate and increase its target bitrate again. This
cycle ends up taking 15–20 seconds end-to-end (Fig. 1a).
What about Probing Mechanisms? A natural question at
this point is if probing mechanisms, specifically those already
supported within GCC [11], improve GCC’s convergence in
such scenarios. While periodic bandwidth probing has proved
effective for some CCAs [4], the GCC mechanism is relatively
ad-hoc. It fires a periodic timer and sends some bounded ex-
tra padding traffic (the frequency can vary but is often in the
range of seconds (e.g., every 5 seconds)). Such an infrequent
timer does not help on the finer RTT-level timescales required
for precise rate control. A five-second timer is, in practice,
very similar to a sluggish encoder that responds to the target
bitrate over a few seconds. Fig. 3 shows how GCC with prob-
ing enabled reacts on a lossless periodic link with an RTT

Figure 3: Ad-hoc Probing Behavior in WebRTC on a periodic link
that alternates between 2Mbps and 500Kbps every 40s. Padding
traffic is used when GCC’s estimate severely drops (t=40s) but
not used when needed during the capacity increase (t=80s).

of 50ms that alternates between 2Mbps and 500Kbps every
40 seconds. The padding traffic is only sent when GCC re-
duces the video bitrate significantly (t=40s) but does not help
at all with bandwidth discovery (t=80s) when the link opens
back up.

2.2 Our Solution
Decoupling the Encoder from the Rate on the Wire. As
illustrated in Fig. 1a, a backlogged flow using a state-of-the-art
CCA like Copa can adapt to time-varying network capacity
on RTT timescales while also controlling network queueing
delay. A key reason is that such CCAs have fine-grained con-
trol over when to send each packet, e.g., driven via the “ACK
clock” [12]. Vidaptive makes video streams appear like a back-
logged flow to the congestion controller. This allows Vidaptive
to leverage existing CCAs optimized for high throughput, low
delay, and fast convergence. In Fig. 1, Vidaptive using Copa
for congestion control achieves nearly identical throughput
and latency as a backlogged Copa flow. Vidaptive quickly in-
creases its bitrate when bandwidth opens up, leading to higher
image quality than GCC following each such event (Fig. 1b).

Vidaptive sends packets on the wire as dictated by the con-
gestion controller. Specifically, when the encoder overshoots
the available capacity, Vidaptive queues excess video packets

3

in a buffer and only sends them out when congestion con-
trol allows (e.g., according to the congestion window and in-
flight packets for window-based CCAs). Conversely, when the
encoder undershoots the available capacity, Vidaptive sends
“dummy packets” to match the rate requested by the congestion
control by padding the encoder output with additional traffic.1
This allows the CCA to operate without disruption (as in a
backlogged flow) despite the encoder’s varying frame sizes.

By decoupling the congestion control’s decisions from the
encoder output, Vidaptive can accurately track time-varying
bottleneck rates. However, it is still important to match the
actual video bitrate produced by the encoder to the congestion
controller’s sending rate. In particular, although buffering
packets and sending dummy traffic can handle brief variations
in the encoder output bitrate, the quality of experience will
suffer if the encoder’s output is persistently higher or lower
than the congestion control’s rate. In the former case, end-to-
end frame latency would grow uncontrollably, and in the latter
scenario, dummy packets would waste significant bandwidth.

Vidaptive includes two mechanisms that control the frame
rate and encoder’s target bitrate to match the video bitrate
to the congestion controller’s sending rate while meeting a
delay constraint. First, it uses simple safeguards to ensure that
end-to-end frame latency is not significantly affected by delay
at the sender. If the delay at the sender exceeds a threshold,
Vidaptive skips a frame. During severe latency spikes (e.g.,
caused by a network outage), Vidaptive drops buffered packets
and resets the encoder using a keyframe.

Second, Vidaptive selects the encoder’s target bitrate by
solving an online optimization that decides how much head-
room to leave between the target bitrate and the CCA’s send-
ing rate (CC-Rate). Increasing the target bitrate to near the
CC-Rate (lowering headroom) provides a higher video bitrate
(and better quality). However, it risks latency increases due to
the variability of the encoder’s output frame sizes and future
sending rate fluctuations. If these latency increases exceed
the video’s delay tolerance, Vidaptive has no choice but to
reduce the frame rate. Thus, the choice of the target bitrate
(headroom) is effectively about navigating a tradeoff between
video bitrate and frame rate. This tradeoff depends on the
inherent variability of the system. If the encoder’s output and
the bottleneck link rate (and hence CC-Rate) are stable and
have low variance, then a small headroom can suffice to en-
sure low, consistent frame latency and, therefore, a high frame
rate. However, the headroom must increase with more variabil-
ity. Vidaptive’s online optimization uses recent frame delay
measurements to adapt to such variability automatically.

1This dummy traffic could also be repurposed for helpful information such
as forward error correction (FEC) packets [13, 14] or keyframes for faster
recovery from loss. We leave such enhancements to future work and focus
solely on the impact of dummy traffic on video congestion control.

3 Vidaptive Design
3.1 Overview

Our goal is to design a system for real-time video applications
that responds quickly to any changes in network conditions,
and maintains high utilization of available capacity without
altering the encoder. Vidaptive achieves this by decoupling
the behavior of the transport layer from the unreliable video
encoder, and by closely matching the encoder bitrate to the
CCA’s sending rate (CC-Rate).

Fig. 4 shows Vidaptive’s overall design. The video encoder
encodes frames and sends them to an application-level media
queue before sending the packets out into the network. At the
transport layer, we add a modified window-based “Conges-
tion Controller”, a “Pacer” and a new “Dummy Generator”
to decouple the rate at which traffic is sent on the wire from
the encoder, as described in §3.2. We introduce a new “En-
coder Rate Controller” that monitors the delay frames are
experiencing to trigger the latency safeguards described in
§3.3. The rate controller also uses the discrepancy between
the CC-Rate and the video encoder’s current bitrate, along
with frame delays to adapt the target bitrate and resolution to
efficiently trade off frame rate and frame quality (§3.4).

3.2 Transport Layer

Congestion Controller. To build a more responsive transport
for real-time video, we start with a congestion controller that
is more responsive to the network. A window-based algorithm
keeps the amount of video packets in check without allowing
them to grow uncontrollably and cause high latency, packet
loss, and glitches. Specifically, the congestion window (cwnd)
in Vidaptive tracks the maximum number of in-flight bytes
between the sender and the receiver. cwnd increases when the
queueing delay is lower than what the CCA hopes to impose
and decreases otherwise. The sender only sends out new pack-
ets when the amount in-flight is less than cwnd. Using delay as
the congestion signal prioritizes the end-to-end frame latency
and adjusts the window such that most frames are delivered
in real time. Vidaptive can be used with any delay-controlling
congestion control algorithm. We evaluate Vidaptive with two
recently proposed such algorithms, Copa [3] and RoCC [9].

We compute the system’s sending rate (CC-Rate) as the
cwnd divided by smoothed RTT and use it to configure the
Pacer and the encoder target bitrate (§3.4).
Pacer. The Pacer receives cwnd and the CC-Rate from the con-
gestion controller and paces out the video packets at CC-Rate.
Since the encoder exhibits variance and its output bitrate
may instantaneously overshoot the available capacity (§2),
the pacer is responsible for avoiding a sudden burst of pack-
ets. In Vidaptive, the pacing rate and the congestion window
together determine when to send the next packet.
Dummy Packets. While the window-based CCA ensures
ACK-clocked behavior, and the pacer prevents sudden bursts
of video packets, neither ensures fast feedback between video

4

Video
Encoder

CC-Rate

Receiver
VVD

ACK
ACK

ACK

NetworkPacer / Dummy
GeneratorVVVVV

Media Queue

Video Frames

⍺ ∙ CC-Rate

Queue Info
(e.g., frame
queueing delay)

Pause, Resume,
Reset, Change Res.

Encoder Rate
Controller

Output Video Bitrate

CC
-R

ate
cw

nd

Congestion
Controller

Figure 4: Vidaptive Design. Vidaptive uses a window-based Congestion Controller, Pacer, and a new Dummy Generator to decouple
the rate at which traffic is sent on the wire from the encoder. The Encoder Rate Controller monitors frame delays to trigger latency
safeguards and picks a new target bitrate and resolution based on the discrepancy between the CC-Rate and the video encoder’s current
bitrate.

frame boundaries. The lack of feedback prevents us from
quickly growing our window when bandwidth opens up (§2).
To emulate the behavior of a backlogged flow, we place
“dummy packets” into the pacer’s queue if the CCA is ready
to send a packet but has no available video packets. Note that
the dummy packets never stay in the pacer queue as they are
only generated when the CCA wants to send a packet, but the
pacer queue is empty.

To avoid network delay spikes caused by spurious dummy
packets when the link rate suddenly drops, we do not send
any dummy packets within a few milliseconds (5ms in our
implementation) of reading frames from the camera. The in-
tuition behind this mechanism is that if the network is soon
to deteriorate, the dummy packets sent a few milliseconds
prior to a frame will induce a higher queuing delay in the net-
work and thus increase the frame latency. On the other hand,
if the network rate opens up, not sending packets for a few
milliseconds will not slow down the congestion controller’s
convergence by much.

Lastly, we stop sending dummy packets if the video has
reached a maximum bitrate (12Mbps in our experiments).
Since the video bitrate cannot increase further, sending extra
traffic to discover more available bandwidth is not useful.

3.3 Safeguarding against Latency Spikes

Transport design for any real-time video system must ensure
low-latency frame delivery. As a result, we place two safe-
guards within Vidaptive to avoid transmitting frames that are
unlikely to be successfully received on time. These safeguards
essentially reduce the frame rate during highly congested pe-
riods to mitigate latency spikes; we discuss our principled
strategy for trading off frame rate with quality in §3.4.
Encoder Pause. Vidaptive monitors the time packets spend in
the pacer queue before they are sent out. If the time spent by
the oldest packet exceeds a pacer queue pause threshold (𝜏), we
pause encoding and buffer the latest un-encoded frame. If the
CC-Rate increases and the pacer queue is drained, we resume

encoding and send video packets from the latest buffered frame
if it is within ∼ 17ms (33ms/2) of that frame being read.
Otherwise, we skip this frame altogether and encode the next
frame since we are closer in time to reading the next frame.
We set 𝜏 = 33ms by default in our implementation, thereby
pausing encoding if packets from the previous frame are yet
to be sent out. The intuition here is that there is no point in
encoding a frame that would have to sit in the Pacer queue,
waiting for a previous frame to finish transmission.2 Instead,
we always encode and transmit fresh frames when they have a
high chance of reaching the receiver with acceptable latency.
Encoder Reset. If video packets have been stuck in the pacer
for extended periods (> 1s), the network is likely experiencing
an outage or extreme congestion. Packets already sent out
will likely be lost, making their corresponding frames not
decodable. Sending more video packets dependent on those
un-decodable frames is wasteful and makes application-level
recovery harder. Furthermore, packets from these frames have
already incurred a huge latency in the pacer queue, and sending
them out would mean very high end-to-end frame latency.
Instead, we drain the pacer entirely and reset the encoder by
forcing it to send a keyframe. Since video packets received
after the congestion event belong to a keyframe, the receiver’s
decoder has no errors when decoding them. This reset, similar
to pausing, has the impact of controlling worst-case frame
latency. It also allows Vidaptive to choose very conservative
target bitrates and resolutions (§3.4) in the aftermath of a
congestion event that ensures that video packets get through to
the receiver and give us fast feedback to help reset the system.

3.4 Trading off Frame Rate and Quality

Vidaptive skips encoding some frames to reduce latency as
described in §3.3. Since this reduces the frame rate and affects

2A high delay through the Pacer queue reflects congestion at the bottleneck
link. If we ignore CC-Rate and transmit the packets stuck in the Pacer queue
(as currently implemented in WebRTC), they would still have to wait at the
bottleneck link.

5

the smoothness of the video, Vidaptive is set up to reduce the
frame bitrate proactively and, consequently, the frame quality
in favor of letting more frames get through.

We formalize the tradeoff between frame rate and frame
quality as a decision problem that picks a target bitrate for the
encoder based on how much we prioritize achieving a high
frame rate over high video quality. Specifically, we pick 𝛼, the
fraction of the CC-Rate to supply as the target bitrate to the
encoder. When the frame rate is low, we choose a smaller 𝛼 to
create smaller frames but let more of them get through. When
the frame rate is high, we choose a higher 𝛼 to obtain higher
quality frames while sacrificing a little on the achieved frame
rate. To affect significant and sudden changes in the video
bitrate based on network conditions, we update the resolution
in addition to setting the target bitrate.
Preliminaries. Vidaptive encodes each frame if the frame
queueing delay (delay through the pacer queue) for the oldest
unsent frame is not more than the pacer queue pause threshold
𝜏. We define Vidaptive’s frame rate score to capture how
many frames it successfully delivers over a time interval 𝑇 . If
there are 𝑁 frames over a time interval 𝑇 that experience de-
lays through the pacer queue denoted by 𝑑𝑖 for 𝑖∈ {1,2, ..,𝑁},
we define as the ratio of the number of frames successfully
sent (those whose queuing delays do not exceed 𝜏) to 𝑁 , the
total number of frames. In other words,

 =
∑𝑁

𝑖=1𝟙[𝑑𝑖 ≤ 𝜏]
𝑁

, (1)

where 𝟙[𝑑𝑖 ≤ 𝜏] = 1 if 𝑑𝑖 ≤ 𝜏 and 0 otherwise. At higher
 , most frames have 𝑑𝑖 ≤ 𝜏 and do not pause the encoder
which results in a higher frame rate. 𝑇 =1s by default in our
implementation.

If the camera’s frame rate is 𝑓𝑚𝑎𝑥 (typically 30 FPS), the gap
between frames is Δ = 1

𝑓𝑚𝑎𝑥
(typically 33ms). For maximum

efficiency, the frame queueing delay should be close to Δ, such
that the last packet of a frame is transmitted just as the next
frame is encoded. Thus, to measure Vidaptive’s efficiency and
its impact on frame quality, we define its bitrate score as,

 = min
(

∑𝑁
𝑖=1 𝑑𝑖
𝑁Δ

,1
)

(2)

Note that
∑𝑁

𝑖=1 𝑑𝑖
𝑁 is the average frame queueing delay over the

𝑁 samples in the last time interval 𝑇 , and its ratio relative to
Δ can be viewed as a proxy for utilization. For example, if
 = 0.2, the system is sending 20% of the video traffic it can
send to the link without causing additional delays.
Choosing a Target Bitrate. The frame queueing delay is a
function of the estimation of the link rate, CC-Rate, and frame
sizes. As a result, it is impacted by fluctuations in both the
encoder’s output and in the CC-Rate. These fluctuations are
out of our control and can be viewed as a form of exogenous
“noise” impacting frame delays. However, we can influence

0 5 10
Sample #

20

30

40

d i
 (m

s)

di

(a) Frame queueing
delay samples

0.0 0.5 1.0
1.0

1.2

1.4

1.6

1.8

O
bj

ec
tiv

e(
) *

(b) Optimization
Objective

0 5 10
Sample #

20

30

40

d i
 (m

s)

di

(c) Counterfactual
optimization

Figure 5: Counterfactual optimization flow. Given a set of
frame queueing delay samples (left), whose average is shown
in green and outliers higher than 𝜏 are shown in red, we evaluate
Objective(𝛼) for discrete 𝛼 and find 𝛼∗ that maximizes it (middle).
We update the counterfactual values of frame queueing delay
with 𝛼∗ to have fewer outliers above 𝜏 but a lower average (right).

the expected frame sizes by controlling the encoder’s target
bitrate. The crux of our method is to pick the target bitrate in
a way that maximizes a weighted linear combination of and
 based on recent per-frame queueing delay measurements.
Assume a target bitrate 𝛼 ⋅ CC-Rate is given to the encoder
where 0 < 𝛼 < 1. Increasing 𝛼 increases each frame’s size and
its 𝑑𝑖 (frame size divided by CC-Rate). Since 𝑑𝑖 depends on 𝛼,
we rename it 𝑑𝑖(𝛼). Increasing 𝑑𝑖(𝛼) increases but reduces
 , i.e. 𝛼 induces a tradeoff between the frame rate and the
frame quality. Our goal is to find 𝛼∗ such that:

maximize 𝜆
1−𝜆

 + (3)

s.t. 0 < 𝛼 < 1

where 𝜆 ∈ (0,1) is a parameter that reflects how much the
application favors higher frame rate over better frame quality.
When 𝜆 ∼ 1, the application favors a high frame rate; when
𝜆 ∼ 0, the application favors larger frames and higher quality.
Solving the Optimization. To choose 𝛼, one would ideally
want to solve the above optimization problem over future
frames. However, it is hard to model 𝑑𝑖(𝛼) for future frames
since these can depend on future video content (e.g., the extent
of motion) and how CC-Rate changes in the future. Instead, we
use hindsight optimization [15] to solve for the best 𝛼 we could
have picked in hindsight for recent past frames. Estimating the
effect 𝛼 would have had on the delays of previous frames is
simple. Assume we have frame queueing delay measurements
𝑑𝑖 for 𝑖 ∈ {1,2, ..,𝑁} over a time interval 𝑇 , and we encoded
these frames with a target bitrate 𝛼𝑖 ⋅CC-Rate. Had all these
frames been encoded by 𝛼 instead, the counterfactual frame
queueing delay would have been 𝑑𝑖(𝛼) = 𝑑𝑖

𝛼
𝛼𝑖

. This estimate
assumes that frame size is proportional to the target bitrate (and
hence proportional to 𝛼), and that changing the target bitrate
would not have changed CC-Rate. Using these counterfactual
delay estimates, we can now solve the optimization problem
in Eq. (3).
Fig. 5 shows an example of this counterfactual optimization
problem. Fig. 5a shows frame queueing delay samples and

6

their average (green line). The samples that are less than 𝜏 are
colored in blue, and those larger than 𝜏 (which would cause
a frame to be skipped) are colored in red. Fig. 5b shows the
Objective(𝛼) versus 𝛼, and its maximizer 𝛼∗. Fig. 5c shows the
counterfactual frame queueing delay values, 𝑑𝑖, had 𝛼∗ been
used to encode them. The scaled-down 𝑑𝑖 values reduce the
number of outliers above 𝜏 (increasing frame rate), but their
average is smaller (decreasing frame sizes). As we increase 𝜆
(giving more emphasis to frame rate), the optimal solution will
select smaller and smaller values of 𝛼, reducing the number
of outliers further. Computing 𝛼∗ can be done efficiently by
evaluating the objective at only a finite set of 𝛼 =min(𝜏 ⋅ 𝑑𝑖𝛼𝑖

,1)
for 𝑖 ∈ {1,2, ...,𝑁} (see A.1 for details).

How does 𝛼 work? To demonstrate how 𝛼 reacts to link ca-
pacity variations, we run Vidaptive on a 1.5Mbps link that
experiences 10s of high variability. We repeatedly feed the
encoder with a fixed 1280×720 frame to remove encoder vari-
ance. Fig. 6a shows the values of 𝛼 and normalized frame rate,
the ratio of frame rate and 𝑓𝑚𝑎𝑥. Before the fluctuations start
at 10s, Vidaptive operates at 𝑓𝑚𝑎𝑥 with a very high 𝛼. During
the noisy period (10s–20s), when the frame rate drops and the
frame queueing delay increases, 𝛼 decreases to improve frame
rate and reduce video bitrate. When the link steadies after the
20s, 𝛼 resets to its high value. To demonstrate how 𝛼 reacts to
encoder variations, we tested Vidaptive on a fixed 1.5Mbps
link with a dynamic video [16]. The encoded frame sizes in-
crease during high-motion periods due to large differences
from previous frames. Fig. 6b illustrates how 𝛼 adapts to the
variable output of the encoder, decreasing in the aftermath of
a large frame to improve frame rate before increasing again.

Resolution Selection. While tuning the target bitrate effec-
tively adapts the video bitrate over smaller ranges, we change
the resolution when more drastic changes are needed. Specifi-
cally, we make one of three decisions on every frame: maintain,
increase, or decrease the current resolution. We decrease the
resolution by one level (e.g., from 1080p to 720p) if the num-
ber of frames delivered in the last time interval 𝑇 is below
the minimum acceptable frame rate (5 FPS in Vidaptive) be-
cause this suggests that frames are too large for the current
link capacity. In contrast, if 𝛼 is high and the measured video
bitrate is far lower than the encoder’s supplied target bitrate,
the encoder is having trouble meeting its target bitrate and
maintaining high utilization at the current resolution because
the frames are too small. So, we increase the resolution by one
level (e.g., 720p to 1080p). We simply maintain the resolution
if none of the above cases are met. To avoid changing the
resolution too frequently and ensure we have sufficient data
points to make further changes, we only update the resolution
if more than 𝑇 seconds have passed since the latest resolution
change. The details of the mechanism are in A.2.

(a) 1.5Mbps link with 10s of noise and a low-motion video.

(b) Fixed 1.5Mbps link with a high-motion video.

Figure 6: 𝛼’s response to link and video encoder variations. 𝛼
picks lower values (more headroom) when the link capacity or
encoder output varies significantly to maintain a good frame rate.
The normalized frame rate is the ratio of achieved frame rate to
maximum frame rate (30 FPS).

4 Implementation
We implemented our system on top of Google’s implementa-
tion of WebRTC [2].
Congestion Controller. We replace GCC within WebRTC
with two window-based delay-sensitive algorithms, Copa [3]
and RoCC [9]. We reused the logic from the original imple-
mentation of Copa [17]. Given 𝑟𝑡𝑡𝑚𝑖𝑛, the minimum observed
RTT, RoCC sets the congestion window (cwnd) to a small
constant more than the number of bytes received in the last
(1 + 𝛾)𝑟𝑡𝑡𝑚𝑖𝑛 interval. To achieve high utilization with con-
trolled delays, RoCC aims to maintain a network queueing
delay of 𝛾𝑟𝑡𝑡𝑚𝑖𝑛 where 𝛾 is the delay-sensitiveness parameter.
Dummy Generator. We repurpose the padding generator in
WebRTC to generate dummy packets that are within the cwnd
and no more than 200 bytes each. Dummy packets are ACKed
by the receiver but have a special padding to ensure that the
payload is ignored. We have implemented safeguards to limit
the maximum rate of the dummy traffic to the maximum pos-
sible video bitrate (set as 12Mbps).
Latency Safeguards. The transport layer sets the encoder
target bitrate to zero to signal a pause if the oldest packet’s age
in the pacer queue exceeds the pacer queue pause threshold
(𝜏). We reuse WebRTC’s support for buffering the latest un-
encoded camera frame. We force an Encoder Reset if the

7

oldest packet age exceeds 1 second in Vidaptive by draining
all the video packets in the pacer queue and signaling the
video encoder to send a keyframe via an existing API call in
WebRTC.
Encoder Rate Controller. Vidaptive has two modules to
adapt the encoder to the network: encoder bitrate and res-
olution selection. We disabled the resolution logic in We-
bRTC [18] and moved the adaptation logic to occur prior to
frame encoding. These modules record 𝛼 values and frame
queueing delay samples received from the transport layer
whenever a frame is sent out from the pacer. Vidaptive picks
the next 𝛼∗ and frame resolution on a frame-by-frame basis by
optimizing over the 𝛼 and frame queueing delay values over
a sliding window of the last 𝑇 seconds (Algorithm 1). We
use 𝑇 = 1s by default. The sliding window ensures gradual
changes in 𝛼 over time.

After picking 𝛼∗, the resolution module chooses whether
to decrease, increase, or hold the current resolution on a per-
frame basis as described in §3.4. The resolution module tracks
how many consecutive frames have signaled “increase” or
“decrease’ and changes the resolution if the number exceeds
the threshold for that signal (15 frames for “decrease” and
30 for “increase”) 3. It also waits at least 𝑇 seconds before
changing the resolution again.

5 Evaluation
We evaluate Vidaptive atop a WebRTC-based implementation
on Mahimahi links. We describe our setup in §5.1 and use it to
compare existing baselines in §5.2. In §5.3, we delve deeper
into Vidaptive’s design components. Trace-level breakdowns
of all results can be found in App. C.

5.1 Setup
Testbed. Inspired by OpenNetLab [19], we built a testbed,
implemented in C++, on top of WebRTC [20] that enables a
headless peer-to-peer video call between two endpoints. The
sender reads video frames from an input file and the receiver
records the received frames to an output file. To match video
frames between the sender and the receiver for visual quality
and latency measurements, a unique 2D barcode is placed
on each frame [7]. We emulate different network conditions
between the sender and receiver by placing the receiver behind
a Mahimahi [8] link shell. Vidaptive uses Copa [3] as the
default CCA. All experiments are run for 2min on a lossless
link with a one-way delay of 25ms.
Metrics. Two primary metrics are used to quantify the perfor-
mance improvements of Vidaptive: frame quality and frame la-
tency. Frame quality is measured by the Peak Signal-to-Noise
Ratio (PSNR [21]) between received frames and the corre-
sponding source frames. Vidaptive reports the time between
frame read at the sender and frame display at the receiver as
frame latency and deems the display time for frames that are
not received at the receiver as the presentation time of the

3Vidaptive prioritizes responding to drops in capacity faster than increases.

10
2

10
1 0

10
1

10
2

10
3

P95 Latency Improvement (ms)

0

1

2

3

4

Av
g

PS
N

R

 Im
pr

ov
em

en
t (

dB
)

ALd2d

ALd2u

ALdd

ALdu

TLdd

TLdu
TLsd TLsu

TUddTUdu

VEdd

VEdu

VLdd

VLdu

VLsd

VLsu

Figure 7: Average PSNR improvement vs. P95 latency improve-
ment of Vidaptive over GCC. Vidaptive improves both P95 la-
tency and PSNR for almost half of the traces while improving
one of the two on the rest.

subsequent displayed frame [7]. We also report the network
utilization and frame rate at the receiver.
Network Traces. We evaluate each scheme on a set of 16 cel-
lular traces bundled with Mahimahi [8], and also use synthetic
traces to illustrate the convergence behavior in 5.3.
Videos. We use a 1080p (i.e., 1920×1080) video with a frame
rate of 30 FPS YUV video dataset curated from YouTube.
Tab. 1 describes the details in the appendix. All the experi-
ments are on the first video of the dataset (Tab. 1) unless stated
otherwise. Audio is disabled throughout the experiments.
Baselines. We evaluate Google Congestion Control algorithm
(GCC), WebRTC’s default transport mechanism. We also eval-
uate Vidaptive with Copa and RoCC. We use 𝛾 = 0.5 (§4) for
RoCC and 𝛿 = 0.9 (see [3]) for Copa to maintain low-network
delay. We choose 𝜆 = 0.5 to weigh frame rate and utilization
equally when optimizing the target bitrate in Vidaptive (§3.4).
The pacer queue pause threshold is set to 𝜏 = 33𝑚𝑠, and frame
queueing delay measurement interval is set to 𝑇 = 1𝑠 for on-
line optimization of the target bitrate.

5.2 Overall Comparison

We summarize Vidaptive’s performance improvements over
WebRTC atop GCC on all Mahimahi cellular traces in Fig. 7.
The X axis (symlog [22] format) shows the P95 latency im-
provement, and the Y axes show the average PSNR and video
bitrate improvements of Vidaptive over GCC. On nearly all
traces, Vidaptive improves PSNR (1.6 dB on average). Vi-
daptive also improves P95 latency on 10 out of 16 traces,
achieving over 2.7 seconds improvement in P95 frame latency
on average across all the traces. Vidaptive has 45-380 ms
higher P95 latency on 5 of the traces, although it improves
average PSNR by 0.8-3.4 dB on these traces.

To better understand per-frame behavior, Fig. 8 shows the
CDFs of PSNR and frame latency of all the frames across all
the traces. Vidaptive achieves a better PSNR at all the per-
centiles by sending larger frames when possible. Overall, it
improves average PSNR by 1.9 dB and P95 PSNR by 2.2 dB.

8

(a) PSNR CDF (b) Latency CDF

Figure 8: CDF of frame PSNR and latency across all frames and
all the traces. Vidaptive achieves higher PSNR on all percentiles
while getting lower latency on higher percentiles. Vidaptive has
higher latency in lower percentiles due to larger frame sizes.

100

0

100

200

300

Im
pr

ov
em

en
t (

%
)

Link Utilization
Video Bitrate

P95 Latency
Frame Rate

Average

Figure 9: Performance benefits for Vidaptive over GCC. Vidap-
tive achieves higher utilization and video bitrate compared to
GCC. Vidaptive improves P95 latency on half the traces. Vidap-
tive reduces the frame rate because the its CCA stops sending
frames during outages to maintain low latency. The whiskers are
P5 and P95, the interquartile range shows P25, P50, and P75.
Since Vidaptive generally sends larger frames, its minimum la-
tency is higher than GCC, and it slightly increases the median
latency (148 ms for GCC versus 195ms for Vidaptive). How-
ever, GCC’s frame latency becomes much worse beyond the
75th percentile. The high percentiles correspond to scenarios
with high link rate variability and outages, where Vidaptive’s
CCA (Copa) responds faster than GCC. For example, Vidap-
tive reduces P95 frame latency by 2687ms compared to GCC
(4120ms→ 1433ms).

Fig. 9 shows the distribution of the normalized improve-
ment of the Vidaptive’s metrics compared to GCC per trace.
The whiskers denote P5 and P95 values, the interquartile range
shows P25–P75, the horizontal line shows P50 and the dot
shows the average. Because Vidaptive’s CCA is more respon-
sive, Vidaptive, on average, achieves more than 2.5× of GCC’s
link utilization. Vidaptive also achieves a higher video bitrate
than GCC on nearly all traces, yielding an average of ∼2× and
up to 2.7× improvement. Vidaptive improves the P95 latency
by up to ∼2x. In Fig. 7, whenever Vidaptive has a higher P95
latency, it has higher video bitrate and quality. Vidaptive has

Figure 10: Copa with dummy traffic exhibits faster convergence
of the video bitrate to the available network capacity and main-
tains a smoother steady-state video bitrate.

∼10% and 30% lower frame rate on average and in the worst
case compared to GCC, resulting in frame rates of 27 FPS
and 21 FPS respectively. This reduction in frame rate happens
during outages when, unlike GCC, Vidaptive’s CCA chooses
not to send any frames and avoids further congestion. This
caps Vidaptive’s frame rate but achieves better frame latency.

5.3 Understanding Vidaptive’s Design

Effect of Dummy Traffic. To quantify the effect of dummy
traffic, we disable the changes we made to the target bitrate
selection logic and focus on transport layer changes (§3.2).
In Fig. 10, we emulate a link that starts with 5Mbps of band-
width for 40 s, drops to 2Mbps for the next 40 s before jumping
back to 5Mbps. We compare the video and padding bitrate for
“Copa” to Copa with dummy traffic (“Copa+Dummy”). Copa
takes 6 s to match the network capacity, while Copa+Dummy
takes 2 s. The dummy traffic is sent only when the video traf-
fic cannot match the link capacity when it suddenly opens up
(around 0s and 80s). Copa does not match capacity as fast
because its rate on the wire is determined by the slow-reacting
encoder (§2). Further, “Copa+Dummy” has a more stable
steady-state bitrate than “Copa” because the dummy traffic de-
couples the CCA’s feedback from the video encoder’s variable
output, enabling more accurate link capacity estimation.
Ablation Study. To understand the impact of different com-
ponents in Vidaptive’s design, we incrementally evaluate the
benefits of changing the congestion control and adding dummy
traffic at the transport layer (§3.2), enabling the latency safe-
guards (§3.3), and running the encoder bitrate and resolution
selection approach described in §3.4. Fig. 11 shows the distri-
bution of the normalized performance improvement compared
to GCC on all the traces for different system variations.

In “Copa,” we replace GCC with a window-based con-
gestion control algorithm but keep the rest of the modules
unchanged. Copa is more aggressive than GCC in bandwidth
allocation, improving the average link utilization and video

9

Copa
Copa+Dummy

Copa+Dummy+Latency
Vidaptive

Average

0

50

100

150

200

250

 U
til

iz
at

io
n

(%
)

(a) Utilization improvement

0

50

100

150

200

250

 V
id

eo
 B

itr
at

e
(%

)
(b) Video Rate improvement

10
3

10
2

10
1

0

10
1

10
2

10
3

10
4

 F
ra

m
e

La
te

nc
y

(%
)

(c) P95 Latency improvement

30

25

20

15

10

5

0

 F
ra

m
e

R
at

e
(%

)

(d) Frame Rate improvement

Figure 11: Performance benefits over GCC with different Vidap-
tive components. “Copa” improves video bitrate and utilization
but hurts frame latency. Dummy traffic improves video bitrate
and utilization. Latency knobs in “Copa+Dummy+Latency” re-
duce the latency by seconds. With the encoder bitrate and reso-
lution selection, Vidaptive has higher frame rate than previous
versions. Since schemes with Copa do not send frames in outages,
they have lower frame rate than GCC. The whiskers are P5 and
P95, the interquartile range shows P25, P50, and P75.

bitrate by over 2×. However, the aggressiveness causes an
average increase of 3.1 seconds in the P95 latency. The frame
rate also reduces because Copa’s window-based mechanism,
unlike GCC, simply stops sending when it detects outages.

In “Copa+Dummy,” as the name suggests, we add dummy
traffic (§3.2) on top of Copa. Since dummy traffic speeds up
bandwidth discovery, the link video bitrate and link utilization
improves over “Copa.” However, the P95 frame latency is still
very high compared to GCC.

In “Copa+Dummy+Latency,” we enable the latency safe-
guards on top of “Copa+Dummy” but keep the encoder bi-
trate selection logic unchanged. This reduces the P95 latency
(Fig. 11c) compared to GCC, “Copa,” and “Copa+Dummy,”
yielding an average reduction of over 2.2 seconds in P95 la-
tency compared to GCC. Since the safeguards pause encoding
of frames that increase the latency, the overall frame rate,
video bitrate, and utilization decrease compared to “Copa”
and “Copa+Dummy.”

Finally, in “Vidaptive”, the system aims to find the right tar-
get video bitrate for the encoder by running the optimization
described in §3.4. Because this system is trying to balance the
frame rate and frame quality, the video bitrate reduces, and the
frame rate increases compared to “Copa+Dummy+Latency”.
Moreover, the latency further decreases because of the reduc-
tion of the video bitrate. The utilization is comparable across
all schemes with dummy traffic since it pads any encoder

Figure 12: CDF of frame resolutions across all the traces. Vidap-
tive selects higher resolutions but is conservative during outages
by reducing the resolution quickly in lower percentiles.

output to match the link rate.

Resolution Distribution. Vidaptive uses a different resolu-
tion scheme than WebRTC. Fig. 12 shows the CDF of all the
selected resolutions during the experiment across all the traces.
More than 80% of the time, Vidaptive chooses a higher reso-
lution than WebRTC, which often translates to higher video
quality. When the link capacity is very low or highly variable,
Vidaptive chooses to send the lowest resolution, manifesting
itself in lower resolution values in low percentiles. In con-
trast, WebRTC’s resolution mechanism [18] reacts slowly and
causes huge latency spikes. Vidaptive currently supports the
resolutions shown in Fig. 12.

Using a Different Congestion Controller. To show that Vi-
daptive can work with any delay-sensitive window-based CCA,
we replaced Copa with RoCC [9]. Fig. 13a shows the PSNR
and P95 latency improvements of Vidaptive (RoCC) com-
pared to GCC. Vidaptive (RoCC) follows similar trends as
Vidaptive and improves the average video bitrate on almost
all traces while improving the P95 latency for half of them.
Fig. 13b shows the distribution of the normalized performance
improvements of Vidaptive (RoCC) over GCC on all traces.
Like Vidaptive, Vidaptive (RoCC) achieves a higher link uti-
lization and video bitrate on average (more than 3× and ∼ 2×
respectively), while getting an improvement of up to ∼2× in
P95 latency and an increment of at most 360ms. Vidaptive
(RoCC)’s frame rate is ∼16% lower on average and 30% lower
in the worst case than GCC, resulting in frame rates of 25 FPS
and 21 FPS, respectively.

Evaluation on More Videos. We evaluated Vidaptive on
all the videos described in §5.1. Fig. 14 shows the average
PSNR improvement against the P95 latency improvement over
GCC. Vidaptive improves the average PSNR for ∼ 90% of the
settings while increasing the P95 latency by at most 455ms.
Since Vidaptive shows similar trends for different videos, we
focus on one video and Copa for the remaining experiments.

10

10
2

10
1 0

10
1

10
2

10
3

P95 Latency Improvement (ms)

0

1

2

3

4

Av
g

PS
N

R

 Im
pr

ov
em

en
t (

dB
)

ALd2d

ALd2u

ALdd

ALdu

TLdd

TLdu
TLsdTLsu

TUdd
TUdu

VEdd

VEdu

VLdd

VLdu

VLsd

VLsu

(a) Average PSNR improvement vs.P95 latency improvement of
Vidaptive over WebRTC

100

0

100

200

300

Im
pr

ov
em

en
t (

%
)

Link Utilization
Video Bitrate

P95 Latency
Frame Rate

Average

(b) Performance improvements distribution

Figure 13: Performance of Vidaptive using a different CCA. Vi-
daptive (RoCC) has a similar performance to Vidaptive (Copa).

5.4 Effect of Parameter Choices

Effect of 𝜆. We evaluate the impact of the parameter 𝜆, which
trades off video bitrate against frame rate (§3.4). Fig. 15 shows
the distribution of the normalized improvement of the metrics
relative to GCC on all of the traces with 𝜆 = 0.2,0.5,0.7,0.99.
When 𝜆 increases, the optimization framework in §3.4 favors a
higher frame rate over the video bitrate, hence video bitrate de-
creases (Fig. 15b), and average frame rate increases (Fig. 15d).
Since Vidaptive uses dummy traffic, changes in the video bi-
trate do not affect CCA estimations and consequently do not
change the overall link utilization. As a result, the overall link
utilization (sum of the video and padding bitrates), shown in
Fig. 15a, does not change by selecting a different 𝜆. Vidap-
tive has safeguards to control the maximum latency; hence,
changing 𝜆 does not significantly affect the P95 frame latency,
as seen in Fig. 15c. Note that during any outages, Vidaptive
does not send any frames, which caps Vidaptive’s frame rate.
We chose 𝜆 = 0.5 as the default because it maintains a good
video bitrate while keeping the P95 latency low with minimal
reduction in frame rate (∼10%).
Pacer Queue Pause Threshold (𝜏). Fig. 16 shows how the
pacer queue pause threshold 𝜏 (§3.3) affects Vidaptive. We

10
2

10
1

10
0 0

10
0

10
1

10
2

10
3

10
4

P95 Latency Improvement (ms)

2

0

2

4

6

Av
g

PS
N

R

 Im
pr

ov
em

en
t (

dB
)

Figure 14: Average PSNR improvement vs. P95 latency improve-
ment of Vidaptive over GCC for all the videos in the dataset.
Each color denotes one trace. Vidaptive improves both P95 la-
tency and PSNR for about half of the traces and videos while
improving one of the two metrics on the rest.

=0.2 =0.5 =0.7 =0.99 Average

0

50

100

150

200

250

300

 U
til

iz
at

io
n

(%
)

(a) Utilization improvement

100

50

0

50

100

150

200

 V
id

eo
 B

itr
at

e
(%

)

(b) Video Rate improvement

150

100

50

0

50

100

 F
ra

m
e

La
te

nc
y

(%
)

(c) P95 Latency improvement

25

20

15

10

5

0

5

 F
ra

m
e

R
at

e
(%

)

(d) Frame Rate improvement

Figure 15: Effect of 𝜆 on Vidaptive’s performance. Increasing the
value of 𝜆 increases the frame rate and decreases the video bitrate
and quality. The whiskers are P5 and P95, the interquartile range
shows P25, P50, and P75.
tested Vidaptive with 𝜏 = 33, 500, 1000 ms. Changing 𝜏 does
not change the network utilization (Fig. 16a) because dummy
traffic decouples congestion control from the encoder, padding
any encoder output to match the link rate. As 𝜏 increases,
the frame rate score increases (Eq. 1), and the encoder bi-
trate selection logic enforces a higher video bitrate (Fig. 16b).
However, these higher-quality frames spend more time in the
pacer queue and experience higher P95 latencies (Fig. 16c).
At higher 𝜏, the Encoder Pause threshold is higher, so more
frames are encoded, resulting in a higher frame rate (Fig. 16d).
Vidaptive selects 𝜏 = 33𝑚𝑠 as it has low P95 latency, relatively
high frame rate and video bitrates when compared to GCC.
Optimization Time Interval (𝑇). We show the impact of 𝑇 ,
the interval over which the frame rate and bitrate scores are
calculated to strike a balance between them (§3.4). Fig. 17

11

=33 =500 =1000 Average

0

50

100

150

200

250

300

 U
til

iz
at

io
n

(%
)

(a) Utilization improvement

100

50

0

50

100

150

200

250

300

 V
id

eo
 B

itr
at

e
(%

)
(b) Video Rate improvement

800

600

400

200

0

200

 F
ra

m
e

La
te

nc
y

(%
)

(c) P95 Latency improvement

30

25

20

15

10

5

0

5
 F

ra
m

e
R

at
e

(%
)

(d) Frame Rate improvement

Figure 16: Effect of pacer queue pause threshold (𝜏) on Vidaptive.
As 𝜏 increases, the P95 latency increases as frames spend a longer
wait time in the pacer queue but results in higher video bitrates.
Increasing 𝜏 first decreases the received frame rate as frames
spend a long time in the pacer queue, but then it increases the
received frame rate because Encoder Reset is triggered and new
frames are encoded at lower resolution. The whiskers are P5 and
P95, the interquartile range shows P25, P50, and P75.

shows performance improvements of Vidaptive compared to
GCC for 𝑇 = 100,1000,10000 ms. Again, Vidaptive’s link
utilization (Fig. 17a) is comparable across all variants because
of dummy traffic. A smaller 𝑇 means that Vidaptive reacts to
any sudden and local changes in recent frame queueing delay
data. 𝑇 = 100 means that the encoder bitrate selection looks
at utmost three measurements for a camera with 30 FPS to
optimize 𝛼. Any temporary decrease in the few frame queueing
delay samples results in a higher encoder target bitrate that
affects the slow encoder for a long period of time, resulting
in higher video bitrate a lower frame rate and consequently a
high latency. On the other hand, a large 𝑇 makes the system
insensitive to recent changes in frame queueing delay, and a
few large frame queueing delay measurements will result in
lower values of 𝛼, which reduces the video bitrate. Further,
because the resolution changes at most every 𝑇 , a 10 second
𝑇 does not lower the resolution in time in outages, causing a
reduction in the frame rate and severely affecting the latency.
We picked 𝑇 = 1000𝑚𝑠 for Vidaptive to ensure the bitrate
selection is relatively stable while maintaining sensitivity to
the recent frame queueing delay samples.

6 Related Work
Congestion Control. End-to-end congestion control ap-
proaches can be broadly categorized into delay-based [1,3,4,6,
10,23–25] or buffer-filling schemes [26,27]. Delay-based pro-
tocols aim to minimize queuing by adjusting their sending rate
based on queuing delay [10,25,28], or delay-gradients [1,6,24].

T=100 T=1000 T=10000 Average

0

50

100

150

200

250

300

 U
til

iz
at

io
n

(%
)

(a) Utilization improvement

50

0

50

100

150

200

 V
id

eo
 B

itr
at

e
(%

)

(b) Video Rate improvement

400

300

200

100

0

100

 F
ra

m
e

La
te

nc
y

(%
)

(c) P95 Latency improvement

50

40

30

20

10

0

 F
ra

m
e

R
at

e
(%

)

(d) Frame Rate improvement

Figure 17: Performance comparison of Vidaptive using differ-
ent intervals 𝑇 , for encoder bitrate selection. The duration of 𝑇
affects the sensitivity to recent frame queueing delay measure-
ments, and consequently the frame rate, latency and video bitrate
of the system. The whiskers are P5 and P95, the interquartile
range shows P25, P50, and P75.

Buffer-filling algorithms [26, 29, 30] send as much traffic
as possible until loss or congestion is detected. Some ap-
proaches like Nimbus [31] switch between delay-based and
buffer-filling modes to improve fairness against competing
traffic while maintaining high utilization. However, limited
attention has been paid to congestion control for application-
limited flows [32, 33] like video traffic that is generated at
fixed intervals determined by the frame rate.

WebRTC Systems. Many video applications use Web Real-
time Communication (WebRTC) [2] to deliver real-time video.
GCC [34], WebRTC’s rate control, uses delay gradients to ad-
just the sending rate. However, GCC’s conservative behavior
coupled with the variance in encoder output results in either
under-utilization or latency spikes.

Salsify [7] previously observed a mismatch between video
encoder output and available capacity, and rectified it by en-
coding multiple versions of the same frame and picking the
better match. This requires changing the video codec at the
sender and the receiver, making it hard to deploy. Vidaptive
instead matches encoder output to network capacity without
changes to the encoder. Adaptive bitrate algorithms [35–39]
solve a similar problem for on-demand video using informa-
tion about available bandwidth, buffer size, and current bitrate
to determine the encoder’s target bitrate. A recent proposal
called SQP [40] achieves low end-to-end frame delay for in-
teractive video streaming applications but operates in much
higher bitrates than Vidaptive is designed for.

12

7 Conclusion
This paper proposes Vidaptive, a new rate control mechanism
for low-latency video applications that is highly efficient and
adapts rapidly to changing network conditions without mod-
ifications to the video encoder. Vidaptive injects “dummy”
traffic to make video traffic appear like a backlogged flow
running a delay-based congestion controller. Vidaptive also
continuously adapts the frame rate, encoder’s target bitrate,
and video resolution to reduce discrepancies between the en-
coder output bitrate and link rate. We leave to future work an
exploration of leveraging dummy traffic for purposes like FEC
or keyframes, and the benefits from functional encoders like
Salsify [7] in Vidaptive for improved real-time experience.

References
[1] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and

Saverio Mascolo. Analysis and design of the google
congestion control for web real-time communication
(webrtc). In Proceedings of the 7th International Con-
ference on Multimedia Systems, pages 1–12, 2016.

[2] WebRTC. https://webrtc.org/.

[3] Venkat Arun and Hari Balakrishnan. Copa: Practical
delay-based congestion control for the internet. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 329–342, 2018.

[4] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control. Queue, 14(5):20–
53, 2016.

[5] Keith Winstein, Anirudh Sivaraman, and Hari Balakr-
ishnan. Stochastic forecasts achieve high throughput
and low delay over cellular networks. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 459–471, 2013.

[6] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan
Subramanian, and Carmelita Görg. Adaptive congestion
control for unpredictable cellular networks. In Proceed-
ings of the 2015 ACM Conference on Special Interest
Group on Data Communication, pages 509–522, 2015.

[7] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine
Wu, Riad S Wahby, and Keith Winstein. Salsify: Low-
latency network video through tighter integration be-
tween a video codec and a transport protocol. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 267–282, 2018.

[8] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh
Goyal, Keith Winstein, James Mickens, and Hari Balakr-
ishnan. Mahimahi: Accurate record-and-replay for http.
In Usenix annual technical conference, pages 417–429,
2015.

[9] https://108anup.github.io/assets/papers/CC
matic-Hotnets22.pdf.

[10] Lawrence S. Brakmo and Larry L. Peterson. Tcp ve-
gas: End to end congestion avoidance on a global inter-
net. IEEE Journal on selected Areas in communications,
13(8):1465–1480, 1995.

[11] https://chromium.googlesource.com/external
/webrtc/+/3c1e558449309be965815e1bf/webrtc
/modules/congestion_controller/probe_contr
oller.cc.

[12] Van Jacobson. Congestion avoidance and control. ACM
SIGCOMM computer communication review, 18(4):314–
329, 1988.

[13] Michael Rudow, Francis Y Yan, Abhishek Ku-
mar, Ganesh Ananthanarayanan, Martin Ellis, and
KV Rashmi. Tambur: Efficient loss recovery for
videoconferencing via streaming codes. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 953–971, 2023.

[14] Marcin Nagy, Varun Singh, Jörg Ott, and Lars Eggert.
Congestion control using fec for conversational multi-
media communication. In Proceedings of the 5th ACM
Multimedia Systems Conference, pages 191–202, 2014.

[15] Edwin KP Chong, Robert L Givan, and Hyeong Soo
Chang. A framework for simulation-based network con-
trol via hindsight optimization. In Proceedings of the
39th IEEE Conference on Decision and Control (Cat.
No. 00CH37187), volume 2, pages 1433–1438. IEEE,
2000.

[16] https://www.youtube.com/watch?v=19ikl8vy4z
s.

[17] https://github.com/venkatarun95/genericCC/
blob/master/markoviancc.cc.

[18] https://chromium.googlesource.com/external
/webrtc/+/master/video/g3doc/adaptation.md.

[19] Jeongyoon Eo, Zhixiong Niu, Wenxue Cheng, Francis Y
Yan, Rui Gao, Jorina Kardhashi, Scott Inglis, Michael
Revow, Byung-Gon Chun, Peng Cheng, et al. Opennet-
lab: Open platform for rl-based congestion control for
real-time communications. Proc. of APNet, 2022.

[20] https://webrtc.googlesource.com/src/+/a2f5
d45b81c6ae5632af0c4c45e8988f330af7f1.

[21] Alain Hore and Djemel Ziou. Image quality metrics:
Psnr vs. ssim. In 2010 20th international conference on
pattern recognition, pages 2366–2369. IEEE, 2010.

13

https://webrtc.org/
https://108anup.github.io/assets/papers/CCmatic-Hotnets22.pdf
https://108anup.github.io/assets/papers/CCmatic-Hotnets22.pdf
https://chromium.googlesource.com/external/webrtc/+/3c1e558449309be965815e1bf/webrtc/modules/congestion_controller/probe_controller.cc
https://chromium.googlesource.com/external/webrtc/+/3c1e558449309be965815e1bf/webrtc/modules/congestion_controller/probe_controller.cc
https://chromium.googlesource.com/external/webrtc/+/3c1e558449309be965815e1bf/webrtc/modules/congestion_controller/probe_controller.cc
https://chromium.googlesource.com/external/webrtc/+/3c1e558449309be965815e1bf/webrtc/modules/congestion_controller/probe_controller.cc
https://www.youtube.com/watch?v=19ikl8vy4zs
https://www.youtube.com/watch?v=19ikl8vy4zs
https://github.com/venkatarun95/genericCC/blob/master/markoviancc.cc
https://github.com/venkatarun95/genericCC/blob/master/markoviancc.cc
https://chromium.googlesource.com/external/webrtc/+/master/video/g3doc/adaptation.md
https://chromium.googlesource.com/external/webrtc/+/master/video/g3doc/adaptation.md
https://webrtc.googlesource.com/src/+/a2f5d45b81c6ae5632af0c4c45e8988f330af7f1
https://webrtc.googlesource.com/src/+/a2f5d45b81c6ae5632af0c4c45e8988f330af7f1

[22] https://matplotlib.org/stable/gallery/scal
es/symlog_demo.html.

[23] Changhyun Lee, Chunjong Park, Keon Jang, Sue B
Moon, and Dongsu Han. Accurate latency-based con-
gestion feedback for datacenters. In USENIX Annual
Technical Conference, pages 403–415, 2015.

[24] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vah-
dat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacen-
ter. ACM SIGCOMM Computer Communication Review,
45(4):537–550, 2015.

[25] Cheng Jin, David X Wei, and Steven H Low. Fast tcp:
motivation, architecture, algorithms, performance. In
IEEE INFOCOM 2004, volume 4, pages 2490–2501.
IEEE, 2004.

[26] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey,
and Michael Schapira. PCC: Re-architecting congestion
control for consistent high performance. In 12th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 15), pages 395–408, 2015.

[27] TCP. "https://datatracker.ietf.org/doc/htm
l/rfc793.

[28] Sea Shalunov, Greg Hazel, Janardhan Iyengar, and Mirja
Kuehlewind. Low extra delay background transport
(ledbat). Technical report, 2012.

[29] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new
tcp-friendly high-speed tcp variant. SIGOPS Oper. Syst.
Rev., 42(5):64–74, jul 2008.

[30] Sally Floyd, Tom Henderson, and Andrei Gurtov.
Rfc3782: The newreno modification to tcp’s fast recov-
ery algorithm, 2004.

[31] Prateesh Goyal, Akshay Narayan, Frank Cangialosi,
Srinivas Narayana, Mohammad Alizadeh, and Hari Bal-
akrishnan. Elasticity detection: A building block for
internet congestion control. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 158–176, 2022.

[32] Updating TCP to Support Rate-Limited Traffic. https:
//www.rfc-editor.org/rfc/rfc7661.html.

[33] Cubic Quiescence: Not So Inactive. https://www.ie
tf.org/proceedings/94/slides/slides-94-tcp
m-8.pdf.

[34] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and
Saverio Mascolo. Analysis and design of the google
congestion control for web real-time communication
(webrtc). In Proceedings of the 7th International Con-
ference on Multimedia Systems, pages 1–12, 2016.

[35] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In Pro-
ceedings of the conference of the ACM special interest
group on data communication, pages 197–210, 2017.

[36] Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: Evidence from a large video
streaming service. In Proceedings of the 2014 ACM
conference on SIGCOMM, pages 187–198, 2014.

[37] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Si-
nopoli. A control-theoretic approach for dynamic adap-
tive video streaming over http. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, pages 325–338, 2015.

[38] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitara-
man. Bola: Near-optimal bitrate adaptation for on-
line videos. IEEE/ACM Transactions On Networking,
28(4):1698–1711, 2020.

[39] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Alexander
Levis, and Keith Winstein. Learning in situ: a random-
ized experiment in video streaming. In NSDI, volume 20,
pages 495–511, 2020.

[40] Devdeep Ray, Connor Smith, Teng Wei, David Chu,
and Srinivasan Seshan. Sqp: Congestion control for
low-latency interactive video streaming. arXiv preprint
arXiv:2207.11857, 2022.

14

https://matplotlib.org/stable/gallery/scales/symlog_demo.html
https://matplotlib.org/stable/gallery/scales/symlog_demo.html
"https://datatracker.ietf.org/doc/html/rfc793
"https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/rfc/rfc7661.html
https://www.rfc-editor.org/rfc/rfc7661.html
https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-8.pdf
https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-8.pdf
https://www.ietf.org/proceedings/94/slides/slides-94-tcpm-8.pdf

A Encoder Bitrate and Resolution Selection
Mechanism

In this section, we explain the encoder bitrate and resolution
selection algorithms in detail.

A.1 Solving the Optimization Problem
Assume we have 𝑁 frame queueing delay measurements
𝑑𝑖 for 𝑖 ∈ {1,2, ..,𝑁} over a time interval 𝑇 , for frames en-
coded instantaneously with a target bitrate 𝛼𝑖 ⋅CC-Rate where
CC-Rate was approximated to be constant over the interval.
We use hindsight optimization and ask “had we picked a dif-
ferent target bitrate, what would have been the counterfactual
values of 𝑑𝑖?” We use .̃ to show counterfactual variables.

Had all these frames been encoded by 𝛼 instead, the coun-
terfactual frame queueing delay would have been 𝑑𝑖 = 𝛼 𝑑𝑖

𝛼𝑖
.

Let 𝑘𝑖 =
𝑑𝑖
𝛼𝑖

for 𝑖 ∈ {1,2, ..,𝑁}. The counterfactual values of
 and as a function of 𝛼 are

̃ (𝛼) =

∑𝑁
𝑖=1𝟙[𝛼 ⋅

𝑑𝑖
𝛼𝑖
≤ 𝜏]

𝑁

=
∑𝑁

𝑖=1𝟙[𝛼 ⋅𝑘𝑖 ≤ 𝜏]
𝑁

(4)

̃(𝛼) = 𝑚𝑖𝑛
(

𝑓𝑚𝑎𝑥 ⋅

∑𝑁
𝑖=1 𝛼 ⋅

𝑑𝑖
𝛼𝑖

𝑁
,1
)

= 𝑚𝑖𝑛
(

𝑓𝑚𝑎𝑥 ⋅
∑𝑁

𝑖=1 𝛼 ⋅𝑘𝑖
𝑁

,1
)

(5)

With this definition, we find 𝛼∗ such that it maxi-
mizes the counterfactual optimization objective, denoted by
Objective(𝛼),

𝛼∗ = argmax
𝛼

Objective(𝛼)

= argmax
𝛼

𝜆
1−𝜆

̃ (𝛼)+ ̃(𝛼)

= argmax
𝛼

⎧

⎪

⎨

⎪

⎩

𝜆
1−𝜆

∑𝑁
𝑖=1𝟙[𝛼 ⋅

𝑑𝑖
𝛼𝑖
≤ 𝜏]

𝑁

+min
(

𝑓𝑚𝑎𝑥 ⋅

∑𝑁
𝑖=1 𝛼 ⋅

𝑑𝑖
𝛼𝑖

𝑁
,1
)

⎫

⎪

⎬

⎪

⎭

s.t. 0 < 𝛼 < 1

(6)

Without loss of generality, we assume that the values of
𝑘𝑖 for 𝑖 ∈ {1,2, ...,𝑁} are sorted in increasing order. Let
𝑥𝑖 =

𝜏
𝑘𝑖

for 𝑖 ∈ {1,2, ...,𝑁}. Note that 𝑥𝑖 values are in de-
creasing order. ̃ (𝛼) is a discrete monotonically reducing

function relative to 𝛼 whose value changes at 𝛼 = 𝑚𝑖𝑛(𝜏𝑘𝑖
,1)

for 𝑖 ∈ {1,2, ...,𝑁}. If 𝑥𝑖+1 < 𝑥𝑖 we have ̃ (𝑥𝑖+1) = ̃ (𝑥𝑖)+1
for 0 < 𝑥𝑖,𝑥𝑖+1 < 1. Since ̃(𝛼) is a monotonically increas-
ing function of 𝛼, we have ̃(𝑥𝑖+1) < ̃(𝑥𝑖). For any value of
𝑥 such that 𝑥𝑖+1 < 𝑥 ≤ 𝑥𝑖, since ̃ (𝑥) = ̃ (𝑥𝑖) and ̃(𝑥) ≤
̃(𝑥𝑖), Objective(𝑥) ≤ Objective(𝑥𝑖). As a result, checking
Objective(𝑥𝑖) and Objective(𝑥𝑖+1) is enough to find the maxi-
mum in interval (𝑥𝑖+1,𝑥𝑖]. This means that checking 𝑥𝑖 values
for 𝑖 ∈ {1,2, ...,𝑁} is sufficient to find 𝛼∗. Algorithm 1 shows
the detailed algorithm for solving this optimization problem.
In our implementation, if 𝑁 is not large enough, we declare
an outage and linearly increase the amount of 𝛼 to back off
from the congestion.
A.2 Resolution Selection Mechanism
Vidaptive has an adaptive mechanism to change the resolution
in two scenarios. First, when the current frame rate is low, Vi-
daptive lowers the resolution because the current frame sizes
are too big to go through the network. Second, if the output
average video bitrate of the encoder is lower than the aver-
age target bitrate given to the encoder in the last 𝑇 seconds,
despite a high 𝛼∗, Vidaptive needs to increase the resolution
because the encoder is unable to match the current bitrate at
its current resolution. The assumption behind this is that if
the chosen resolution for the encoder is correct, the encoder
should be able to achieve its target bitrate over long periods
of time (e.g. 𝑇 = 1000𝑚𝑠). The resolution selection module
sits before the video encoder to choose the resolution on a
frame-by-frame basis. It also observes the output of the en-
coder to measure the video bitrate. It measures the system’s
current frame rate and its enc_ratio, the ratio between the en-
coder’s achieved bitrate and its supplied target bitrate. We
define MinFrameRate as the minimum acceptable frame rate
of the system, and MinEncRatio as the minimum required
value of enc_ratio. The resolution selection module decides
on a per-frame basis to emit a “Decrease”, “Increase” or “Hold
resolution” signal based on the values of its measurements as
described in Algorithm 2.

If Vidaptive releases “Decrease Resolution” for
ResDownThresh, set to 15 consecutive frames, the frame rate
has been consistently low and the resolution is decreased. If
Vidaptive releases “Increase Resolution” for ResUpThresh,
set to 30 consecutive frames, the encoder is not keeping up
with the target bitrate for a long period and the resolution is
increased. We also prevent unwanted resolution oscillations
that could adversely affect the quality of experience by
making sure we don’t change resolution twice within a time
interval of 𝑇 .

B Video Bitrate Improvements
Figures 19a, 19b, and 19c show the corresponding video bitrate
vs. latency improvements for experiments shown in Figures 7,
13, and 14.

15

Algorithm 1 Solving Optimization to Find Encoder Target
Bitrate Ratio (𝛼∗)
Input : D: Vector of frame queuing delays,

A: Vector of 𝛼 values for frames in D,
𝛼′: Current value of 𝛼

Output : 𝛼∗: encoder bitrate ratio to CC-Rate

// Control Parameters
𝑓𝑚𝑎𝑥 ← 30 ; // max. frame rate of system
𝜆← 0.5 ; // Frame rate sensitivity
𝜏 ← 33 ; // Frame Drop Threshold
𝑇 ; // Optimization interval (s)
MinFrameRate ← 5 ; // Min. frame rate (FPS)
𝛼𝑚𝑖𝑛 ← 0.05 ; // Min. 𝛼 value
𝛼𝑚𝑎𝑥 ← 1.0 ; // Max. 𝛼 value

Function Objective(𝑥, 𝐾):
𝑁 = Size(D)
 , = 0,0

for 𝑖← 0 to 𝑁 −1 do
← + 𝐾[𝑖]

𝑁

if 𝐾[𝑖] ≤ 𝜏 then

 ← + 1
𝑁

←min(,1)
return 𝜆

1−𝜆 +

Function FindAlpha (𝐷, 𝐴, 𝛼′):
𝑁 = Size(D)
if 𝑁

𝑇 ≤ MinFrameRate then
// Not enough samples, frame rate is small
// Frames too big
return 𝑚𝑎𝑥(𝛼′−0.15,𝛼𝑚𝑖𝑛)

𝐾 ← empty list
for 𝑖← 0 to 𝑁 −1 do

𝐾[𝑖]← 𝐷[𝑖]
𝐴[𝑖]

Sort K in ascending order
𝛼∗ ← 𝛼𝑚𝑎𝑥
max_obj ← Objective (𝛼𝑚𝑎𝑥,K)
for 𝑖← 0 to 𝑁 −1 do

if 𝜏
𝛼𝑚𝑎𝑥

< K[𝑖] ≤ 𝜏
𝛼𝑚𝑖𝑛

then

x ← 𝜏
K[𝑖]

obj_value ← Objective(x, K)
if max_obj < obj_value then

max_obj ← obj_value
𝛼∗ ← x

return 𝛼

Algorithm 2 Adaptive Resolution Control
// Control Parameters
T ← 1 ; // Optimization interval (s)
MinEncRatio ← 0.9 ; // Min. required encoder ratio
MinFrameRate ← 5 ; // Min. frame rate (FPS)
ResUpThresh ← 30 ; // Approx. 1 second
ResDownThresh ← 15 ; // Approx. 500 ms for outage
// Global Parameters
PrevSignal ← 0 ; // previous res. signal
SignalCount ← 0 ; // # of consecutive res. signals
LastResTime ← 0 ; // Last res. change time (s)
DecRes ← −1 ; // Decrease Resolution
HoldRes ← 0 ; // Hold Resolution
IncRes ← −1 ; // Increase Resolution
Input : 𝑁 : Number of frame queuing delay samples,

𝛼∗: Current value of 𝛼,
enc_ratio: encoder output to input bitrate ratio,
now: Time in s when calling the function

Output : res_dir: Direction to change the resolution
res_dir ← HoldRes
if 𝑁

𝑇 ≤ MinFrameRate then
res_signal ← DecRes

else if enc_ratio < MinEncRatio and 𝛼∗ > 0.9 then
res_signal ← IncRes

if res_signal = PrevSignal and res_signal ≠ 0 then
SignalCount ← SignalCount+1

else
SignalCount ← 0

PrevSignal ← res_signal
if LastResTime < now−𝑇 then

if (SignalCount > ResDownThresh and res_signal = DecRes)
or (SignalCount > ResUpThresh and res_signal = IncRes)
then

LastResTime ← now_ms
SignalCount ← 0
res_dir ← res_signal

else
res_dir ← HoldRes

return res_dir

Figure 18: CDF of all frame resolutions across all the traces for
different values of 𝜆. As 𝜆 increases, Vidaptive becomes more
conservative in selecting higher resolutions.

16

10
2

10
1 0

10
1

10
2

10
3

P95 Latency Improvement (ms)

0

1

2

3

4

Av
g

Vi
de

o
Bi

tra
te

 Im

pr
ov

em
en

t (
M

bp
s)

ALd2d

ALd2u

ALdd

ALdu

TLdd

TLdu

TLsd

TLsu

TUdd
TUduVEdd

VEdu

VLdd

VLdu
VLsd VLsu

(a) Average Video Bitrate improvement vs P95 latency improve-
ment of Vidaptive over GCC.

10
2

10
1 0

10
1

10
2

10
3

P95 Latency Improvement (ms)

0

1

2

3

4

5

Av
g

Vi
de

o
Bi

tra
te

 Im

pr
ov

em
en

t (
M

bp
s)

ALd2d

ALd2u

ALdd

ALdu

TLdd

TLdu

TLsd

TLsu

TUddTUduVEdd
VEdu

VLdd

VLdu
VLsd

VLsu

(b) Avg. video bitrate improvement vs. P95 latency improvement
of Vidaptive (RoCC) over GCC.

10
2

10
1

10
0 0

10
0

10
1

10
2

10
3

10
4

P95 Latency Improvement (ms)

0

1

2

3

4

5

Av
g

Vi
de

o
Bi

tra
te

 Im

pr
ov

em
en

t (
M

bp
s)

(c) Average video bitrate improvement vs. P95 latency improve-
ment of the Vidaptive over GCC for individual videos in the
dataset.

Figure 19: Corresponding video bitrate vs. latency improvements
for experiments in §5.

C Trace-level Breakdown of Results
Overall Results. Fig. 20 shows a detailed comparison of end-
to-end frame metrics and video bitrate of GCC, Vidaptive,
and RoCC+Vidaptive on all the cellular traces. The whiskers
denote P5 and P95 values, the interquartile range shows P25–
P75, the horizontal line shows P50 and the dot shows the
average. Fig. 20a describes the distribution of frame PSNRs.
The average and median PSNR achieved by Copa and RoCC
is higher than GCC on nearly all traces. Moreover, the best
frames in Vidaptive (P75 and P95) have a much higher quality
compared to GCC; e.g., Vidaptive achieves PSNR of more
than 44 dB in VLdd.

On these highly variable cellular links, Vidaptive spans a
wider range of qualities because its adaptive resolution and
fast CCA can capture opportunities to send at higher bitrates,
increasing the PSNR average and P95 values, while reacting
fast to outages by lowering the encoder target bitrate. For
example, in TUdd and TUdu, Vidaptive trades off lower bitrate
and worse P5 and P25 frame PSNR relative to GCC for better
P95 and P75 frame latency (Fig. 20b) by reacting faster during
outages.

However, if the link is generally more stable, Vidaptive’s
worst frames (P5 and P25) have better or comparable quality
than GCC, such as on TLsu. Though Copa and RoCC control
network delays differently, their latency values (Fig. 20b) show
similar trends because the latency safeguards within Vidap-
tive are set up to bound latency independent of the congestion
control dynamics. The P5 and P95 values of the latency for
Vidaptive are generally higher because it prioritizes higher
quality frames. Fig. 21a shows that Vidaptive has a higher
video bitrate and link utilization (sum of the video and dummy
traffic) than GCC. GCC’s lower P5 and P95 latency is also
partially attributed to this under-utilization relative to Vidap-
tive.

Vidaptive generally has a slightly lower frame rate as shown
in Fig. 20c because Copa and RoCC do not send the video
frames out on wire if the network is congested. In such cases,
Vidaptive pauses the encoder to keep the latency bounded.
However, Vidaptive still obtains a good frame rate of more than
20 FPS on almost all the traces, which is sufficient for most real-
time video applications. On three challenging traces - TUdd,
TUdu, VEdd - all the schemes have difficulty maintaining a
good frame rate.

Fig. 21b shows the distribution of the instantaneous link
utilization measured using Mahimahi logs. The instantaneous
utilization is the ratio of the departure rate of the link to the
actual link capacity. Vidaptive has a higher average and median
instantaneous link utilization than GCC on all the traces with
both RoCC and Copa. The reason is that using the dummy
traffic enables isolation of the congestion controllers and the
video traffic, and the congestion controllers can now freely
estimate and utilize the network well.

Fig. 21c breaks down the distribution of in-network delay

17

for the schemes. The difference between network delay and
frame latency is that network delay measures the packet delays
inside the network, but frame latency measures an end-to-end
metric between frame read and frame display time. If the
network delay that the video packets experience is high, the
frame latency associated with that frame will inevitably be
high. Vidaptive’s delay-sensitive algorithms ensure that in
nearly all the traces, Vidaptive consistently maintains low
network delay. GCC, in contrast, has a higher network delay
on most traces because it does not have a mechanism to control
queues in the network effectively. This is especially true on
TUdd, TUdu, and VEdd, where GCC experiences high network
delays and frame latencies.
Since Copa slightly outperforms RoCC relative to GCC, we
set Copa as the default CCA in Vidaptive.
Effect of 𝜆. Fig. 22a shows the distribution of PSNR values
for different values of 𝜆. As 𝜆 increases, the optimization in
Eq. 3 favors a higher frame rate (Fig. 22c) to a lower video
bitrate(Fig. 23a). As 𝜆 increases, Vidaptive becomes more and
more conservative by choosing lower values of 𝛼 which results
in choosing lower resolutions that cap the maximum quality
as 𝜆 increases (P95 values of quality decreases). Fig. 18 shows
the CDF of the resolutions selected by Vidaptive for all the
frames in all the traces. Lower resolution also reduces the
average, median, and P25 values of PSNR. As 𝜆 increases,
Vidaptive becomes more conservative in selecting higher res-
olutions. Fig. 22b shows that the latency measurements gen-
erally come down by increasing 𝜆. Simultaneously, the video
bitrates and resolution become lower.

Fig. 22c shows that the average frame rate increases as 𝜆
increases, exactly as we designed it to. Using dummy traffic
decouples the CCA estimations from the underlying video
traffic; hence, the distribution of instantaneous link utilization
(Fig. 23b) and network queueing delay (Fig. 23c) are agnostic
for different values of 𝜆. The sum of the total average video
bitrate and dummy traffic (total link utilization) is constant for
different values of 𝜆 (Fig. 23a).
Ablation Study. Fig. 24 compares the frame statistics of the
systems described in the ablation study in §5.3. Adding the
dummy traffic to “Copa”, “Copa+Dummy” achieves a slightly
higher link utilization (Fig. 25b) because the added dummy
traffic enables better estimation of the network by provid-
ing traffic when there are no video packets. Having a better
network estimation helps increase the average video bitrate
(Fig. 25a) and video quality (Fig. 24a) across its entire range.
For “Copa” and “Copa+Dummy”, the PSNR values increase
(Fig. 24a) and the link utilization (Fig. 25b) increases com-
pared to GCC, and the average video bitrate (Fig. 25a) goes
up consequently because Copa is much more aggressive with
estimating the link rate and giving the highest possible bitrate
(Fig. 25a) to the encoder. However, without Vidaptive latency
knobs, “Copa” and “Copa+Dummy” experience very high
latency values because there is no mechanism to control the
size of the pacer queue when the encoder is producing such

Videos

Youtuber Total Len. Avg. Bitrate

Video 1 10 min 2521 kbps
Video 2 10 min 1082 kbps
Video 3 10 min 2815 kbps
Video 4 10 min 2013 kbps
Video 5 3 min 1694 kbps

Table 1: Details of our dataset. All videos are at 1920×1080.

high bitrates and the network is congested, and CCA is not
sending.

To fix this issue, “Copa+Dummy+Latency” uses the la-
tency mechanisms of Encoder Pause and Encoder Reset that
reduce the latency values across its range (Fig. 24b), but
lowers the frame rate as a consequence of Encoder Pause.
Since “Copa+Dummy+Latency” encodes fewer frames, it has
a lower video bitrate (Fig. 25a) and consequently lower quality
(Fig. 24a) than the variations without “Latency”. The network
delay and instantaneous utilization distributions are almost
identical to “Copa+Dummy” since we using dummy traffic.
To fix the issue with lower frame rate, Vidaptive adds the
optimization mechanism in §3.4. The increase in frame rate
and decrease in the video bitrate can be seen in and Fig. 24c
Fig. 25a, respectively.

All the variations that have Copa as the underlying CCA,
keep the network delay bounded (Fig. 25c) on all traces be-
cause Copa is delay-sensitive. They also have a similar net-
work delay and instantaneous utilization distribution for each
trace. These variations prioritize the network delay and don’t
send any traffic during outages, which restricts the frame rate
of the systems that use them (Fig. 24c), meaning that the sys-
tem prefers to skip encoding the frames that much increase
the total number of bytes in flight.
Details of Effect of Pacer Queue Threshold (𝜏). Fig. 26
shows the comparison of quality-of-experience metrics for
different values of 𝜏. Although changing 𝜏 doesn’t affect the
network utilization due to dummy traffic, increasing it will
result in a higher frame-rate score and, ultimately, a higher
video bitrate. As shown in Fig. 26a, this translates to higher
frame quality for most of the traces. At the same time, as
frame sizes increase, we experience higher latency (Fig. 26b).
Since higher values for 𝜏 mean less aggressive pausing of the
encoder, we also experience a higher frame rate.

D Videos
Dataset Information Tab. 1 summarizes the information of
all the videos that we used in the experiments. The videos
are all collected from YouTube and cover a different range of
motions and settings.

18

https://www.youtube.com/watch?v=hkmnhcsvueE
https://www.youtube.com/watch?v=hxaFQOac6kM
https://www.youtube.com/watch?v=8n1OU9p3fhM
https://www.youtube.com/watch?v=1XfV40xRq2o
https://www.youtube.com/watch?v=19ikl8vy4zs

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

GCC Vidaptive Vidaptive (RoCC) Average

(a) Per-frame PSNR statistics comparison of the received video vs. the original video. Vidaptive has better PSNR values compared to
GCC on almost all the traces.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

GCC Vidaptive Vidaptive (RoCC) Average

(b) Per-frame latency statistics comparison of the received video vs. the original video. Vidaptive has a comparable (within less than
400ms of GCC) or much lower latency values compared to GCC.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

5

10

15

20

25

30

Av
g

Fr
am

e
R

at
e

(fp
s)

GCC Vidaptive Vidaptive (RoCC)

(c) Average frame rate

Figure 20: Comparison of end-to-end frame statistics of quality of experience metrics of Original GCC, Vidaptive, and Vidaptive
(RoCC) on all the Mahimahi cellular traces. Vidaptive has higher quality than GCC on all traces and either improves one or both
amongst PSNR or P95 latency. Vidaptive on average has lower received frame rate. The whiskers are P5 and P95, the interquartile
range shows P25, P50, and P75, and the dot shows the average.

19

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

10

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

GCC
Vidaptive (Video)

Vidaptive (Dummy)
Vidaptive (RoCC) (Video)

Vidaptive (RoCC) (Dummy)

(a) Average throughput of Video traffic vs. Dummy traffic for different schemes. Vidaptive sends a higher video bitrate
and an overall higher link utilization on almost all the traces.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

GCC Vidaptive Vidaptive (RoCC) Average

(b) Instantaneous link utilization distribution for all the schemes. Vidaptive’s average and median instantaneous link
utilization of the network is higher than GCC on all the traces.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
1

10
1

10
3

N
et

w
or

k
D

el
ay

 (m
s)

GCC Vidaptive Vidaptive (RoCC) Average

(c) In-network queueing delay distribution for all the schemes. Vidaptive has network delay-sensitive CCA that strives to
keep the queueing delay low, while GCC has higher network delay in most traces.

Figure 21: Comparison of network statistics of Original GCC, Vidaptive, and Vidaptive (RoCC) on all the Mahimahi cellular traces.
Vidaptive has a higher average and a higher median and average instantaneous utilization than GCC. Vidaptive has a more controlled
network delay and is lower on most traces. The whiskers are P5 and P95, the interquartile range shows P25, P50, and P75, and the dot
shows the average.

20

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

=0.2 =0.5 =0.7 =0.99 Average

(a) Demonstrating the effect of 𝜆 on the PSNR. When 𝜆 increases, the average PSNR decreases as a result of the reduction in video
bitrate.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

=0.2 =0.5 =0.7 =0.99 Average

(b) Demonstrating the effect of 𝜆 on the latency. Vidaptive has safety guards to control the maximum latency; hence, 𝜆 does not
significantly affect the P95 frame latency. However, it reduces other latency measurements as Vidaptive gets more conservative.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

5

10

15

20

25

Av
g

Fr
am

e
R

at
e

(fp
s)

GCC =0.2 =0.5 =0.7 =0.99

(c) Demonstrating the effect of 𝜆 on the average frame rate, when 𝜆 increases, the optimization problem in Eq. 3 favors a higher frame
rate over the video bitrate, hence the frame rate increase.

Figure 22: Displaying the effect of 𝜆 on end-to-end frame metrics of quality of experience. As 𝜆 increases, the PSNR decreases but the
frame rate increases. The average and median latency decreases as Vidaptive becomes more conservative. The whiskers are P5 and
P95, the interquartile range shows P25, P50, and P75, and the dot shows the average.

21

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

10

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

=0.2 (Video)
=0.2 (Dummy)

=0.5 (Video)
=0.5 (Dummy)

=0.7 (Video)
=0.7 (Dummy)

=0.99 (Video)
=0.99 (Dummy)

(a) Demonstrating the effect of 𝜆 on the Video and Dummy bitrate. When 𝜆 increases, the optimization problem in Eq. 3 favors a higher
frame rate over the video bitrate; hence video bitrate decreases. The total sum of dummy and video traffic remains constant.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

=0.2 =0.5 =0.7 =0.99 Average

(b) Instantaneous link utilization distribution for different 𝜆. Vidaptive has an almost identical distribution of instant link utilization
because of the decoupling of CCA and video.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
2

10
1

10
0

10
1

10
2

10
3

N
et

w
or

k
D

el
ay

 (m
s)

=0.2 =0.5 =0.7 =0.99 Average

(c) In-network queueing delay distribution for different 𝜆. Vidaptive has an almost identical distribution of network delay.

Figure 23: Comparison of network statistics of Vidaptive using different values of 𝜆. Vidaptive has similar network characteristics and
simulates the behavior of a backlogged flow from the network’s perspective. The whiskers are P5 and P95, the interquartile range
shows P25, P50, and P75, and the dot shows the average.

22

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

Copa Copa+Dummy Copa+Dummy+Latency Vidaptive Average

(a) Per-frame PSNR statistics comparison of the received video vs. the original video for different system variations.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

Copa Copa+Dummy Copa+Dummy+Latency Vidaptive Average

(b) Per-frame latency statistics comparison of the received video vs. the original video for different system variations. Vidaptive has
lower latency percentiles because of the smarter mechanism adjusts the encoder bitrate.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

5

10

15

20

25

Av
g

Fr
am

e
R

at
e

(fp
s)

GCC Copa Copa+Dummy Copa+Dummy+Latency Vidaptive

(c) Average frame rate comparison across different system variations. Vidaptive achieves a good frame rate while maintaining the
latency.

Figure 24: Comparison of end-to-end frame statistics of quality of experience metrics for different system variations. Vidaptive gets the
best trade-off between latency, PSNR, and frame rate compared to GCC across all the variations. The whiskers are P5 and P95, the
interquartile range shows P25, P50, and P75, and the dot shows the average.

23

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

Copa
Copa+Dummy (Video)
Copa+Dummy (Dummy)

Copa+Dummy+Latency (Video)
Copa+Dummy+Latency (Dummy)

Vidaptive (Video)
Vidaptive (Dummy)

(a) Average throughput of Video traffic vs. Dummy traffic for different system variations. Vidaptive obtains the best balance between
the video bitrate and link utilization among all the variation.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

Copa Copa+Dummy Copa+Dummy+Latency Vidaptive Average

(b) Instantaneous link utilization distribution for all the system variations. All the systems with the dummy traffic have similar link
utilization distribution. Adding the dummy traffic to “Copa” increases all the percentiles for the link utilization.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
1

10
1

10
3

10
5

N
et

w
or

k
D

el
ay

 (m
s)

Copa Copa+Dummy Copa+Dummy+Latency Vidaptive Average

(c) In-network queueing delay distribution for all the schemes. All the variations have similar distributions.

Figure 25: Comparison of network statistics of system variations on all the Mahimahi cellular traces. All the variations using the
dummy traffic display almost identical behavior network behaviors.

24

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

34

36

38

40

42

44

46

PS
N

R
 (d

B)

=33 =500 =1000 Average

(a) Per-frame PSNR statistics comparison for different pacer queue thresholds (𝜏). Increasing 𝜏 increases 𝛼 in Eq. 3, which increases
the video bitrate and quality.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
2

10
3

10
4

Fr
am

e
La

te
nc

y
(m

s)

=33 =500 =1000 Average

(b) Per-frame latency statistics comparison for different pacer queue thresholds (𝜏). Increasing 𝜏 eases the Encoder Pause mechanism
and increases the latency.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

5

10

15

20

25

Av
g

Fr
am

e
R

at
e

(fp
s)

GCC =33 =500 =1000

(c) Average frame rate for different pacer queue thresholds (𝜏). Increasing 𝜏 pauses fewer frames but increases the latency, so the exact
effect of on average frame rate depends on the link characteristics.

Figure 26: Comparison of end-to-end quality-of-experience metrics for different values of 𝜏 on all the Mahimahi cellular traces.

25

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0

2

4

6

8

10

Av
er

ag
e

Bi
tra

te
 (M

bp
s)

=33 (Video)
=33 (Dummy)

=500 (Video)
=500 (Dummy)

=1000 (Video)
=1000 (Dummy)

(a) Average throughput of Video traffic vs. Dummy traffic for different pacer queue thresholds (𝜏). A higher pacer queue threshold
increases the frame rate score, increasing the 𝛼 and consequently the video bitrate.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

0.0

0.2

0.4

0.6

0.8

1.0

N
et

w
or

k
U

til
iz

at
io

n

=33 =500 =1000 Average

(b) Instantaneous link utilization distribution for different pacer queue thresholds (𝜏). Using the dummy traffic, the link utilization is
agnostic to the underlying video traffic.

AL
d2

d

AL
d2

u

AL
dd

AL
du

TL
dd

TL
du

TL
sd

TL
su

TU
dd

TU
du

VE
dd

VE
du

VL
dd

VL
du

VL
sd

VL
su

Trace

10
3

10
1

10
1

10
3

N
et

w
or

k
D

el
ay

 (m
s)

=33 =500 =1000 Average

(c) In-network queueing delay distribution for different pacer queue thresholds (𝜏). Using the dummy traffic, the CCA decisions are
independent of the video traffic, so the network delay is agnostic to 𝜏.

Figure 27: Comparison of network statistics for different values of 𝜏. Vidaptive has similar network characteristics and simulates the
behavior of a backlogged flow from the network’s perspective. The whiskers are P5 and P95, the interquartile range shows P25, P50,
and P75, and the dot shows the average.

26

	Introduction
	Motivation and Key Ideas
	The Problem
	Our Solution

	Vidaptive Design
	Overview
	Transport Layer
	Safeguarding against Latency Spikes
	Trading off Frame Rate and Quality

	Implementation
	Evaluation
	Setup
	Overall Comparison
	Understanding Vidaptive's Design
	Effect of Parameter Choices

	Related Work
	Conclusion
	Encoder Bitrate and Resolution Selection Mechanism
	Solving the Optimization Problem
	Resolution Selection Mechanism

	Video Bitrate Improvements
	Trace-level Breakdown of Results
	Videos

