
Heavy-Hitter Detection 
Entirely in the Data Plane

VIBHAALAKSHMI SIVARAMAN
SRINIVAS NARAYANA, ORI ROTTENSTREICH, MUTHU 

MUTHUKRSISHNAN, JENNIFER REXFORD

1



Heavy Hitter Flows
Flows above a certain threshold of total packets

“Top-k” flows by size

k = 2

Port: 22, Count: 100

Port: 15, Count: 200
Port: 80, Count: 100

Port: 30, Count: 200

2



Why detect heavy hitters?

3

Flow Count

f1 100

f2 75

f3 5

f1

f2

f1

f2

Trouble-shooting and anomaly detection 

Dynamic routing or scheduling of heavy flows



Problem Statement
Restrict processing to data plane

Low data plane state

High accuracy

Line-rate packet processing

4



Emerging Programmable Switches
Programmable switches with stateful memory

Basic arithmetic on stored state

Pipelined operations over multiple stages

State carried in packets across stages

Stage 1 Stage 2 Stage 3 Stage 4

Packet p

5



Constraints
Small, deterministic time budget for packet processing at each stage

Limited number of accesses to stateful memory per stage

Limited amount of memory per stage

No packet recirculation

6



Existing Work

7

Technique Pros Cons

Sampling-based (Netflow, 
sflow, Sample & Hold)

Small “flow memory” to 
track heavy flows

Underestimates counts 
for heavy flows

Sketching-based (Count, 
Count-Min, Reversible)

Statistics for all flows in 
single data structure

No flow identifier to
count association

Counting-based (Space 
Saving, Misra-Gries)

Summary structure with 
heavy flow ids and 
counters

Occasional updates to 
multiple counters



Motivation: Space-Saving Algorithm1

O(k) space to store heavy flows 

Provable guarantees on accuracy

Evict the minimum to insert new flow

Multiple reads but exactly one write per packet

8

1Metwally, Ahmed, Divyakant Agrawal, and Amr El Abbadi. "Efficient computation of frequent and top-k elements 
in data streams." International Conference on Database Theory. Springer Berlin Heidelberg, 2005.



Space Saving Algorithm

Flow Id Packet 
Count

K1 4

K2 2

K3 7

K4 10

K5 1

New 
Key K6

Entire table scan
Complex data structures

9

Flow Id Packet 
Count

K1 4

K2 2

K3 7

K4 10

K6 2

High accuracy
Exactly one write



Towards HashPipe

10

Technique Pros Cons

Space-Saving High accuracy; Exactly one 
write-back

Entire table scan; 
Complex data structures

HashParallel Sample fixed number of 
locations; Approximate 
minimum

Multiple reads per stage; 
Dependent write-back

Sequential Minimum 
Computation

Hash table spread across 
multiple stages; Sample one 
location per stage

Multiple passes through 
the pipeline



Our Solution - HashPipe
Always insert new key in the first stage

Hash to index to a location

Carry evicted key to the next stage

New key K

11

Stage 1

A 5

K1 4

B 6

C 10

Stage 2

K2 3

D 15

E 25

F 100

Stage 3

G 4

K3 3

H 10

I 9

h1 (K) -> K1



Our Solution - HashPipe
At each later stage, carry current minimum key

Hash on carried key to index to a location

Compare against key in location for local minimum

12

Stage 1

A 5

K 1

B 6

C 10

Stage 2

D 3

E 15

K2 25

F 100

Stage 3

G 4

K3 3

H 10

I 9

(K1, 4)



HashPipe

At any table stage, retain the heavier hitter

(K1, 4)

13

Stage 1

A 5

K 1

B 6

C 10

Stage 2

D 3

E 15

K2 25

F 100

Stage 3

G 4

K3 3

H 10

I 9

h2(K1) -> K2
Max(K1, K2) -> K2



HashPipe

At any table stage, retain the heavier hitter

(K1, 4)

14

Stage 1

A 5

K 1

B 6

C 10

Stage 2

D 3

E 15

K2 25

F 100

Stage 3

G 4

K3 3

H 10

I 9

h3(K1) -> K3
Max(K1, K3) -> K1



HashPipe

At any table stage, retain the heavier hitter

Eventually evict a relatively small flow

15

Stage 1

A 5

K 1

B 6

C 10

Stage 2

D 3

E 15

K2 25

F 100

Stage 3

G 4

K1 4

H 10

I 9 Duplicates

High accuracy
Single pass
One read/write per stage



HashPipe Summary
Split hash table into d stages

16

Condition Stage 1 Stages 2 - d

Empty Insert with value 1 Insert key and value carried

Match Increment value by 1 Coalesce value carried with 
value in table

Mismatch Insert new key with value 1, 
evict and carry key in table

Keep key with higher value 
and carry the other



Implementation 
Prototyped on P4

17

Stage 1

A 5

K1 4

B 6

C 10

Stage 2

K2 3

D 15

E 25

F 100

New key K

Stage 3

G 4

H 3

K3 10

I 9

Register 
arrays

Hash on 
packet 
header

(K1, 4)

Packet 
metadata

Conditional updates to 
compute minimum



Evaluation Setup
Top-k 5 tuples on CAIDA traffic traces with 500M packets 

50 trials, each 20 s long with 10M packets and 400,000 flows

Memory allocated: 10 KB to 100 KB; k value: 60 to 300

Metrics: false negatives, false positives, count estimation error

18



Tuning HashPipe

19

k = 210

5040 flowids
maintained in 
table



HashPipe Accuracy

5-10% false 
negatives for 
detecting heavy 
hitters 

20



HashPipe Accuracy

5-10% false 
negatives for the 
detecting heavy 
hitters 

4500 flow 
counters on 
traces with 
400,000 flows

21



HashPipe Accuracy

5-10% false 
negatives for the 
detecting heavy 
hitters 

4500 flow 
counters on 
traces with 
400,000 flows

22



Competing Schemes
Sample and Hold

◦ Sample packets of new flows

◦ Increment counters for all packets of a flow once sampled

Count-Min Sketch
◦ Increment counters for every packet at d hashed locations

◦ Estimate using minimum among d location

◦ Track heavy hitters in cache

23



HashPipe vs. Existing Solutions

24



HashPipe vs Existing Solutions

25



HashPipe vs Existing Solutions

26



Contributions and Future Work
Contributions:
o Heavy hitter detection on programmable data planes

o Pipelined hash table with preferential eviction of smaller flows

o P4 prototype - https://github.com/vibhaa/iw15-heavyhitters

Future Work:
o Analytical results and theoretical bounds

o Controlled experiments on synthetic traces

27



THANK YOU

vibhaa@princeton.edu

28



Backup Slides

29



P4 prototype – Stage 1

30



P4 prototype – Stage 2 onwards

31



HashPipe vs Idealized Schemes

Performance of 
three schemes is 
comparable

HashPipe may 
outperform 
SpaceSaving

32



Programmable Switches
New switches that allow us to run novel algorithms

Barefoot Tofino, RMT, Xilinx, Netronome, etc.

Languages like P4 to program the switches

33


